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A new feature vector for automatic acoustic quality control is presented and applied to the
classi"cation of electric sliding sunroofs at the quality control point by analyzing the sliding
noise. The speci"c features of the sound signals (signatures) which distinguish products of
di!erent quality are not explicitly sought, because these signatures are highly speci"c for
each application. Instead, the property is used that the relevant information about the sound
signals can be resolved by the ears of experts. The time-frequency resolution of the ear is
approximated by a wavelet transform of the signals. As a new approach to the important
problem of noise reduction the concept of auto-synchronized wavelet transforms is
introduced which allows wavelet transforms (and more general time}frequency
representations) to be averaged in the time domain without losing the time-resolved
information in the signals. By this averaging process, statistical #uctuations (noise,
parameter drifts) can be reduced signi"cantly to reveal the characteristic features of the
signals. The classi"cation can then be performed by a next neighbour search on a training
set. The concept of auto-synchronized wavelet transforms is developed in a mathematically
formal way and the properties of the feature vectors obtained are studied by using arti"cial
noisy signals before applying this method to the experimental data.
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1. INTRODUCTION

Since the beginning of the 1950s, the analysis of sound signals for the quality control of
products and manufacturing processes has undergone signi"cant development and is now
widely applied [1]. The sound signals emitted from machines, manufacturing processes (e.g.,
cutting and deformation mechanisms, laser welding) or products caused to vibrate (e.g.,
porcelain, roof tiles) often contain relevant information about the quality of the product.
This information is usually evaluated by human experts. The automation of acoustic quality
control is desirable not only because of cost reasons but, more importantly, in order to
make quality control more objective, i.e., to reduce the dependence of quality standards on
individual decisions which may vary largely and often cannot be reproduced. Despite much
interest in automatic acoustic quality control there has been only little progress in this
direction due to two main di$culties: the "rst problem is to (automatically) extract the
features of sound signals which are relevant for the quality condition of a product for which
no general solution is known, the second di$culty is the high variability of the sound signals
of good quality products, i.e., the acoustic data of di!erent units being classi"ed as good by
sPresent address: Fraunhofer Institute IPA Nobelstr. 12, 70569 Stuttgart, Germany.
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humans may di!er considerably due to production tolerances which makes the automatic
classi"cation di$cult.

Until now several solutions have been proposed for the automatic classi"cation of sound
signals (see e.g., references [1}4]) where time}frequency representations (see, e.g., reference
[5]) are usually applied. Starting from elementary methods such as the observation of selected
bands in the windowed Fourier spectra of the signals [1, 2] more sophisticated methods have
been proposed in references [3, 4]. In reference [3], third and fourth order generalizations of
the Wigner}Ville distribution are used to detect impulse signals in the acoustic or vibration
data of rotating machinery. In reference [4], a method to automate quality control for small
electric motors with an attached gear is introduced. The emitted sound signals are trans-
formed into time}frequency representations of Cohen's class [5], where a Gaussian-shaped
kernel function can be automatically adapted to the speci"c type of signals on a training set.

In this paper, a new method for the automatic classi"cation of sound signals which
contain information in time and in frequency space is presented where the focus is on signals
whose information can (at least in principle) be resolved by the human ear. The starting
point is to describe approximately the time}frequency resolution of the ear by a wavelet
transform. An important problem which arises with the application of time}frequency
representations is the reduction of noise. This is usually performed by pre-processing of the
time series. A widely applied method is time domain averaging [6], where a periodic signal
is averaged over successive cycles in order to attenuate non-periodic components. For this
purpose, a pulse signal synchronized to the signal (in most cases) or the background noise is
necessary. If no synchronous signal is available, Lee and White [7] proposed an adaptive
"ltering process where a delayed feed-back signal is used to separate periodic from
non-periodic components of the signal. However, sound signals in general are non-periodic.
Here the more general situation is addressed in which the sound signal is stationary above
some time scale while the relevant information is contained (everywhere in time space)
below that time scale (which is not the case for impulsive signals). This kind of sound signal
is emitted by many types of machinery and is usually evaluated by human experts.

In this paper, the concept of auto-synchronized wavelet transforms is introduced which
allows wavelet transforms (and more general time}frequency representations) to be averaged
in the time domain without losing the time-resolved information of the signals. By this
averaging process statistical #uctuations (noise, parameter drifts) can be signi"cantly reduced
to reveal the characteristic features of the signals. This method is applied to the classi"cation
of electric sliding sunroofs at the quality control point which is performed by a next neighbour
search on a training set. For this purpose, the structure-borne sound signals of the sliding
noise during closing of the sunroofs were recorded and pre-classi"ed by human experts.

The paper is organized as follows. In the next section, an analysis of the structure-borne
sound signals of the noise of sliding sunroofs is given. This introduces the concept of feature
selection from auto-synchronized wavelet transforms which is developed in section 3 in
a mathematically formal way. The properties of the feature vectors obtained from
auto-synchronized wavelet transforms are studied by using arti"cial noisy signals which are
simple but non-trivial for the purpose of numerically testing the averaging method. In
section 4, this concept is applied to the classi"cation of the sliding sunroof data where the
performance is compared to the standard method of calculating windowed Fourier spectra.

2. PHYSICAL PROPERTIES OF THE SOUND SIGNALS

In order to explore the concept of feature selection from auto-synchronized wavelet
transforms, the properties of the recorded sound signals will "rst be analyzed.



Figure 1. The time series of the structure-borne sound signal of the sliding noise during closing of an electric
sunroof. The sampling rate is 10 kHz.
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A set of 108 time series of the structure-borne sound signals of the sliding noise were
recorded from 13 sunroofs pre-classi"ed as good and from 14 units considered as of poor
quality by human testers. From each sunroof two recordings were made in each two
di!erent sensor positions. The products denoted by &&of poor quality'' are usually not
defective, but are just expected to have a reduced lifetime due to too high a level of abrasion.
Thus, a simple classi"cation into two quality classes A and B is the aim of this analysis. An
example of the time series is shown in Figure 1. The sampling rate of the analogue-digital
converter is 10 kHz and since only the (intrinsic) time scales of the signals will be of interest
(but not their total length) as units in time space the &&number of sample units'' n are chosen
here for simplicity.

Information was provided from the manufacturer that the information content about the
quality condition of a sunroof is contained in the middle, approximately stationary part of
the sound signal. This is roughly the section between the sample units n"10,000 and
n"40,000 in Figure 1. Therefore, only this middle section of the time series will be
examined further. More detailed information about the sound signals or the mechanism by
which they were generated is not available.

First, the signals are tested for a possibly deterministic behaviour. This is done by
comparing the time series (i.e., the indicated centre section) with surrogate data. The
surrogates are generated by the method of phase randomization and subsequent
&&polishing'' of the time series obtained [8]. The &&polishing'' of the surrogates is done by
alternating scaling of the probability distribution and Wiener-"ltering of the Fourier
transform of the surrogate time series in order to adapt it to the original data. If this scheme
converges, (as it usually does) this yields a surrogate time series having the same empirical
spectrum and distribution as the original one. The multiple-step forecast error of a next
neighbour search forecast algorithm is then used in a reconstructed phase space to yield
a discriminating statistics [8]. It turns out that the null-hypothesis that the time series are
generated by a linearily stochastic process cannot be rejected. From this it follows that there
is no deterministic part of the sound signals which is recognizable. However, later results
will show that the time series are not linearly stochastic, i.e., they do not only contain
spectral information but also phase information in frequency space or, equivalently,



Figure 2. The autocorrelation function c (q) of the middle section of the time series shown in Figure 1 (i.e.,
n"10)000,2, 40)000).
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information in time space. This di!erence could not be resolved by the discriminating
statistics.

To test (at least qualitatively) the stationarity of the indicated middle section of the time
series order-10 autoregressive (AR(10)-) models are "tted to subsections of "xed length of
the time series and then the parameters estimated are compared. As a "t method the
minimization of the squared one-step forecast errors is used [8]. It turns out that (at least)
the linear properties of the centre part of the time series are to a good approximation
stationary over length scales NZ500, i.e., on time scales ¹Z 1

20
s.

The information relevant for the classi"cation of the sunroofs can be resolved by the
human ear, i.e., by experts. Because the lowest audible frequency is f+20 Hz, the sound
information is contained on time scales ¹[ 1

20
s. Oscillations on larger time scales are

perceived as sound #uctuations [9] which do not occur because of the stationarity of the
linear properties of the sound signals on time scales ¹Z 1

20
s. This property can also be

followed from the autocorrelation function shown in Figure 2. It can be concluded that the
information for the classi"cation of the sound signals is contained (everywhere in time
space) on length scales N[500.

The properties listed above may be typical for many kinds of technical signals. Because
the method of feature selection from auto-synchronized wavelet transforms does not require
detailed information about the sound signals it may be hoped that this concept is also useful
for applications other than that studied in this paper.

3. THE AUTO-SYNCHRONIZED WAVELET TRANSFORM

Before going into details, the general idea of feature selection from auto-synchronized
wavelet transforms should "rst be described.

3.1. THE PRINCIPLE IDEAS

Because the relevant information of the sound signals can be resolved by the human ear
e!orts are made to imitate the time}frequency resolution of the ear. For frequencies
fZ500 Hz this can, to a good approximation be done by a wavelet transform of the sound
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signals [10, 11]. This is because the perception of tone pitches takes place according to
octaves and this behaviour is simulated by a wavelet transform which divides the frequency
space into octaves in a natural manner. This property is also called a hyperbolic
time}frequency resolution [5]. More detailed psycho-acoustic properties of the sound
signals will not be used here, although in general this may be an interesting starting point
for feature extraction of sound signals.

The next step is to reduce statistical #uctuations (noise, parameter drifts) of the wavelet
transforms of the time series in order to enhance the desired properties of the sound signals.
It is assumed that a su$cient reduction of statistical #uctuations will reveal the
characteristic features of the signals needed for the classi"cation. If relevant information is
contained in the high-frequency bands (as in fact is the case for the sunroof data) this cannot
be achieved by high-pass "ltering. Instead, the concept in this paper is to apply an
appropriate averaging process. It is not possible simply to average over time}frequency
representations (as, e.g., wavelet transforms) which are calculated from subsections of
a stationary time series, because the information contained in the subspace of the
time}frequency plane over which the averaging is performed would be erased. As a new
approach to this problem, the class of auto-synchronized wavelet transforms is introduced.
The auto-synchronized wavelet transform is de"ned as the set of all cyclically in time space
permuted wavelet transforms of a section of a time series. These quantities can be averaged
in the time domain without losing the time-resolved information of the signal. It will be
shown that the signal-to-noise ratio of feature vectors constructed from auto-synchronized
wavelet transforms can be signi"cantly improved through this averaging process.

In the "nal step, the classi"cation of the sound signals has to be performed according to
those features which are relevant for the quality condition of the products. No information
about this is known. It is not desirable to search explicitly for the features of the sound
signals which distinguish products of di!erent quality, because these signatures are highly
speci"c for each application. Instead, the idea is to construct feature vectors in a general
manner from auto-synchronized wavelet transforms and then to perform the classi"cation
by a next-neighbour search on a training set. This will be possible due to a su$cient
low-noise level of the feature vectors. The training vectors have to be calculated from
(reliably) pre-classi"ed items and the training set should contain examples of products being
classi"ed as of good quality as well as of poor quality, representing all typical failures.
During the testing stage a test vector is compared independently with each of
a neighbourhood of training vectors corresponding to items of good and of poor quality.
For a su$ciently large training set the di!erence of the weighted distances to both
neighbourhoods is expected to represent the quality condition of the unit under test.

3.2. THE WAVELET TRANSFORM

The relevant information of the sound signals is contained on length scales N[500, as
mentioned above. Therefore, discrete wavelet transforms of sections of the time series of
length N"512 are calculated. The wavelet "lters are not especially designed to imitate the
time}frequency resolution of the human ear; only the hyperbolic time}frequency resolution
of a wavelet transform should be used here. Instead, the wavelet "lters are designed to
obtain high resolution of a signal in the time}frequency plane and to minimize the e!ect of
the periodic boundary conditions because of a "nite signal length and the aliasing e!ect
which occurs due to the scaling of discrete time series. These requirements are ful"lled if the
wavelet "lters are well localized in the time}frequency plane i.e., if they have a small
time}frequency uncertainty. Additionally, for practical reasons wavelet "lters with compact



Figure 3. The wavelet "lters (band-pass "lters) MhK
k,2

,2, hK
k,5

; k"0,2, 256N in discrete frequency space (solid
lines). Additionally, the high-pass "lter MhpY

k,1
N and the low-pass "lter MlpY

k,5
N are drawn with dashed lines.
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support in frequency space are used. A discussion of these details can be found in reference
[12].

One choice (certainly not unique) which ful"ls these properties are the wavelet "lters
hK
k,j

de"ned in discrete frequency space as

hK
k, j

"lpY
k, j~1

hpY
k, j

, k"!N/2#1,2, N/2, j"2,2, log
2
(N)!1, (1)

where N"512 is the period of the discrete wavelet transform, and the high- and low-pass
"lters hpY

k, j
and lpY

k, j
are given by

hpY
k,j

"G
0 if 0)D k

N
D(f

j
/J2,

J1
2
(1#sin[n log

2
( f ~1

j
D k
N
D)]) if f

j
/J2)D k

N
D)J2 f

j
,

1 if J2 f
j
(D k

N
D)1

2
,

lpY
k, j

"G
1 if 0)D k

N
D(f

j
/J2,

J1
2
(1!sin[n log

2
( f ~1

j
D k
N
D)]) if f

j
/J2)D k

N
D)J2 f

j
,

0 if J2 f
j
(D k

N
D)1

2
,

(2)

In equations (2) f
j
"2~j f

c
"2~(j`1) denotes the split frequency of the "lter hpY

k, j
and lpY

k, j
where j"1,2, log

2
N!1 and f

c
"1

2
is the Nyquist frequency. Figure 3 shows the wavelet

"lters MhK
k,2

,2, hK
k,5

; k"0,2, 256N, and the high-pass "lter MhpY
k,1

N and the low-pass "lter
MlpY

k,5
N. The discrete wavelet "lters are related to each other by scaling and approximately

by inverse scaling, i.e., by trigonometrical interpolation with the factor 2.
The wavelet transform of a time series Mx

n
; n"1,2, NN (where N must be a power of 2)

is now de"ned as the matrix

(=¹h
x
(n, j)), n"1,2, N, j"1,2, J, (3)
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whose columns are the high-pass, band-pass, and low-pass "ltered components of the
signal. J"2,2, log

2
N denotes the number of "lter components.t It should be noted that

this de"nition of a discrete wavelet transform is di!erent from the concept of wavelet
transforms related to multi-resolution analysis [11]. The idea here is to construct a discrete
approximation of a continuous wavelet transform which yields a high resolution of a signal
in the time}frequency plane.

This wavelet transform is by construction an isometric mapping between the
corresponding vector spaces with respect to the standard scalar products, i.e.,

Sx, yT,
N
+
n/1

x
n
yN
n
"

J
+
j/1

N
+
n/1

=¹h
x
(n, j)=¹h

y
(n, j),S=¹h

x
,=¹h

y
T , (4)

where 8 denotes the complex conjugation. A further important property of this transform is
that it preserves translations in time space with periodic boundary conditions, i.e., if the
time series My

n
N and Mx

n
N are related to each other by a translation in time space this

property also holds for their wavelet transforms:

y
n
"x

n~m
8=¹h

y
(n, j)"=¹h

x
(n!m, j). (5)

For this property to hold the redundancy of the wavelet transform is necessary: i.e., the
mapping of a vector to a matrix.

Now, a method of averaging over a set of these wavelet transforms which are calculated
from subsections of a stationary time series can be introduced.

3.3. DEFINITION OF THE AUTO-SYNCHRONIZED WAVELET TRANSFORMS

Assume a set of wavelet transforms=¹h
x
(n, j ), equation (3), calculated from subsections

of a stationary time series. According to reference [13] a time series Mx
n
, n3NN is called

stationary (stationary on time scales*N, respectively) if all joint probabilities
p(x

1
; x

2
;2 ; x

n
) are invariant under translations in time space (on time scales*N, resp.):

i.e.,

p(x
1
; x

2
;2 ; x

n
)"p(x

1`k
; x

2`k
;2 ; x

n`k
) for k3N (for k"lN; l3N, resp.).

Note that this de"nition also applies to deterministic periodic time series with period N.
The (random) subsections of a stationary time series di!er mainly by their initial

conditions which can be described by the realization of a random variable. Since this
property also holds for the columns of =¹h

x
(n, j) the idea is to permute these matrices

cyclically in time space in order to adapt (or synchronize) their initial conditions. It will turn
out that this synchronization process allows time}frequency representations to be averaged
without losing the time-resolved information.

First, a formal de"nition of auto-synchronized wavelet transforms is given. The practical
implementation will be explained later. A quantity which is independent of the initial
conditions is obviously the set of all cyclic permutations in the time variable n of=¹h

x
(n, j).

This set is de"ned as

Rh
x
( j) :"MP

cyc
(=¹h

x
(n, j)) Dn"1,2, NN, j"1,2, J, (6)
tStrictly speaking only the band-pass "lters are wavelet "lters, but this does not allow a complete decomposition
of discrete signals.
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where P
cyc

(=¹h
x
(n, j)) denotes the cyclic permutations of =¹h

x
(n, j) in the variable n. The

de"nition of Rh
x
( j ) requires=¹h

x
(n, j) to preserve translations in time space (equation (5)).

Further, this de"nition does not depend on J"2,2, log
2
N!1.

On the set MRh
x
N of all sets Rh

x
( j) a metric can be de"ned by taking the minimum of the

Euclidean distances

E=¹h
x
!=¹h

y
E
2
,S+

j

+
n

(=¹h
x
(n, j )!=¹h

y
(n, j ))2 (7)

of all cyclic permutations of=¹h
y
(n, j) in the variable n with=¹h

x
(n, j) "xed. This yields the

de"nition

d (Rh
x
, Rh

y
) :"min

n
E=¹h

x
!P

cyc
(=¹h

y
(n, j ))E

2
,E=¹h

x
!P

min
(=¹h

y
)E

2
. (8)

It has to be con"rmed that d(Rh
x
, Rh

y
) in fact has all properties of a metric. The de"nition

immediately yields

d (Rh
x
, Rh

y
)"d (Rh

y
, Rh

x
)*0 and d (Rh

x
, Rh

y
)"08Rh

x
"Rh

y
.

The triangle inequality "nally follows from this property of the Euclidean metric:

d(Rh
x
, Rh

y
))E=¹h

x
!=¹h

y
E
2

"E=¹h
x
!=¹h

z
#=¹h

z
!=¹h

y
E
2

)E=¹h
x
!=¹h

z
E
2
#E=¹h

z
!=¹h

y
E
2
. (9)

Because inequality (9) holds for each choice of =¹h
y

and =¹h
z

one can take the
permutations of =¹h

y
and =¹h

z
which minimize both expressions in the last line. This

"nally yields d (Rh
x
, Rh

y
))d(Rh

x
, Rh

z
)#d(Rh

z
, Rh

y
).

As the next step an addition on the set MRh
x
N can be de"ned by adding the matrices=¹h

x
and P

min
(=¹h

y
) which are synchronized to each other and then all cyclic permutations of the

sum are taken. This yields the de"nition

Rh
x
=Rh

y
:"MP

cyc
([=¹h

x
#P

min
(=¹h

y
)] (n, j )) Dn"1,2, NN , j"1,2, J, (10)

where the cyclic permutation P
min

(=¹h
y
) is determined by the condition of minimal

Euclidean distance between=¹h
x
and P

cyc
(=¹h

y
), (equation (8)). It follows that the addition

in equation (10) is commutative but not associative. By using equation (5) the closure relation,
Rh

x
= Rh

y
"Rh

(x`Pmin(y))
3MRh

x
N is obtained. It follows that the set MRh

x
D = N has the

mathematical structure of a ring with a metric. Further, one has ∀a3R, a(Rh
x
=Rh

y
)"

aRh
x
= aRh

y
.

The quantities Rh
x
( j), Rh

y
( j ) are called auto-synchronized wavelet transforms (in fact they

are sets of time-permuted wavelet transforms), because the initial conditions of the matrices
=¹h

x
and=¹h

y
calculated from subsections of a time series are adapted to each other (or

auto-synchronized) by the permutation process. This property follows from the condition of
minimal Euclidean distance between the permuted matrices, (equation (8)). Because it
su$ces to regard one representative (i.e., one element) of each set Rh

x
( j ), the recipe to add

auto-synchronized wavelet transforms is simply to take the matrices =¹h
x

and =¹h
y
, to

permute one of them until the distance (7) is minimal, and then to add them. The result is
a representative of Rh

x
=Rh

y
. It follows that the addition is commutative, but not associative

if more than two elements should be added.



AUTOMATIC ACOUSTIC QUALITY CONTROL 11
3.4. CONSTRUCTION OF THE FEATURE VECTORS

As the next step a feature vector should be constructed from the time series Mx
n
;

n"1,2, KNN by averaging over the elements MRh
xi
; i"1,2, KN which are calculated

from the K sections of this series Mxi
n
; n"1,2, NN. Because the addition (10) of more than

two elements is not uniquely de"ned, an order of addition has to be determined. This is
done by a clustering algorithm.

Initially each element Rh
xi

de"nes its own cluster which is described by what can be called
its &&centre-of-mass vector'' c

i,1
,Rh

xi . The index (i, k) of c
i,k

indicates that cluster i consists of
k elements. In a "rst step the elements with the smallest distance d (c

i,1
, c

j,1
), (equation (8)) to

each other are uni"ed and a common &&centre-of-mass vector'' is de"ned by
c
i,2

"(c
i,1

= c
j,1

)/2. In this manner, all clusters are successively uni"ed in the order of
smallest distances d (c

i,k
, c

j,l
) where the common &&centre-of-mass vector'' of two clusters is

given by c
i,(k`l)

"(kc
i,k

= lc
j,l

)/(k#l). The clustering process ends with the element
c
1,K

which de"nes an average of the set MRh
xi ; i"1,2, KN. In the next section, the

properties of the feature vectors thus obtained will be studied.
Of course, this clustering scheme is not unique. A further method, for example, to

obtain an ordering of the set MRh
xi ; i"1,2, KN is to take the "rst two-element cluster

which is created as described above and then to unify all remaining clusters only with
this multiple-element cluster in the order of smallest distances d(cJ

1,k
, c

j,1
) of the one-

element cluster c
j,1

to the &&centre-of-mass vector'' cJ
1,k

of the large one. However, for
the data studied the constructed feature vectors cJ

1,K
show inferior properties compared

to c
1,K

.
For the auto-synchronization process it su$ces to consider those columns of the matrices
=¹h

x
which contain relevant time information. These are the high-pass and the J!1

following band-pass components, where J is determined by the lowest dominant frequency
of the signal. For the sunroof of data J"5 is obtained.

At this point, an initial comment about the computational costs of the averaging method
should be made. The auto-synchronization process in fact does not require the matrices
=¹h

x
(n, j ) to be cyclically permuted, but just one-dimensional vectors. Let=¹h

x

'C
(n, j) denote

the matrix which consists of the "rst J columns of=¹h
x
(n, j). By using the unitarity relation

of the Fourier transform (Parseval's theorem) it follows from equation (4) and the de"nition
of the wavelet transform that

E=¹h
x

'C
!=¹h

y

'C
E2
2
"

J
+
j/1

N@2
+

k/~N@2`1

(xL
k
!yL

k
)hK

k, j
(xLN

k
!yLN

k
)hKM

k, j

"+
k

(xL
k
!yL

k
) (xLN

k
!yLN

k
)

J
+
j/1

DhK
k, j

D2

"+
k

(xL
k
!yL

k
) (xLN

k
!yLN

k
) DhpY

k,J
D2

"EhpY
J
xL !hpY

J
yL E2

2
"Ex* hp

J
!y * hp

J
E2
2
. (11)

In equation (11), )( denotes the discrete Fourier transform and * the discrete convolution in
time space. In the third line, hpY

k,J
:"J+J

j/1
DhK

k, j
D2 de"nes a high-pass "lter in frequency

space. From equation (11) it follows that the synchronization of two wavelet transforms
=¹h

x

'C
(n, j ) and =¹h

y

'C
(n, j) is equivalent to the synchronization of the corresponding

high-pass "ltered sections x* hp
J
and y * hp

J
of the time series. It is therefore not necessary



Figure 4. Sawtooth signals with 15% white noise added. The clean signals in (a) and (b) are pairwise related by
re#ection symmetry.
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to calculate all cyclical permutations of=¹h
x

'C
(n, j ) to obtain the feature vector c

1,K
, but only

those of x * hp
J
. This signi"cantly decreases the computational e!ort.

3.5. A NUMERICAL TEST OF THE FEATURE VECTORS

The properties of the feature vectors c
1,K

obtained from auto-synchronized wavelet
transforms will now be studied. Therefore, arti"cial noisy signals are considered which are
simple but non-trivial for the purpose of numerically testing the averaging method. Because
the principle applicability of this averaging scheme should be shown here and since this
concept is not expected to be limited to a narrow class of signals it is not intended to
simulate the sliding noise data of the sunroofs. Apart from that, there is no detailed
information available about the mechanism of the sound signals generation.

For a numerical test eight sawtooth signals are considered which di!er by their slope
where each pair of them are related by re#ection symmetry (see Figure 4). 15% white noise
is added to the signals. According to the de"nition of stationarity stated in section 3.3 these
signals are stationary above the time scale ¹"45 of their period while all information



Figure 5. The pairwise distances Md(ci
1,30

, cj
1,30

); 1)i)j)8N, equation (8), of the feature vectors Mci
1,30

;
i"1,2, 8N (**) and the Euclidean distances of the spectral feature vectors ( - - - - - - ), both calculated from the
signals shown in Figure 4. The numbering of the signals is given in Figure 4, the perspective is 153 in the upper and
03 in the lower panel. The front part of the "gure would be symmetric to the rear part and is therefore not plotted.
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needed for the classi"cation is contained below that time scale. These properties are similar
to the sunroof data.

First, the performance of the feature vectors c
1,K

is compared to the standard method of
calculating windowed Fourier spectra. Therefore, windowed Fourier transforms over 512
sample units of the time series are calculated and the squared magnitudes are averaged over
a section of length 15,360. Figure 5 shows the pairwise Euclidean distances of the spectral
feature vectors drawn with dashed lines.

As a comparison the feature vectors Mci
1,K

; i"1,2, 8N are calculated from the sawtooth
signals where the number of elements MR

xl ; l"1,2, KN which are averaged per time series
is chosen as K"30. The wavelet transforms M=¹h

xl (n, j ); l"1,2, KN have the period
N"512 which also yields a signal length of 15,360. It is important to note that the period of
the wavelet transforms is not a multiple of the signals' period ¹"45. This in fact makes this
numerical example a highly non-trivial test for the averaging method. Since the dominant
frequency of the sawtooth signals is f" 1

45
it su$ces to regard the high-pass and the four

following band-pass "ltered components for the calculation of the feature vectors. Figure 5



Figure 6. The matrix Mr
ij
(K); 1)i)j)8N, equation (12), plotted for K"4, 10, 20 and 30 (dotted ( ) ) ) ) ) ) ),

dashed ( - - - - ), long dashed (} } } ), and solid lines (**), respectively). The numbering of the signals and the
perspectives are the same as in Figure 5.
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shows the pairwise distances Md(ci
1,30

, cj
1,30

); 1)i)j)8N, (equation (8)) of the feature
vectors Mci

1,30
; i"1,2, 8N drawn with solid lines.

As can clearly be seen, the spectral feature vectors are only able to separate the fraction of
higher harmonics contained in the sawtooth signals while the signals being symmetric to
each other cannot be distinguished (the diagonal in Figure 5). In contrast, the feature
vectors ci

1,30
resolve the information in time space well. The distance d (ci

1,30
, cj

1,30
)

monotonically increases as a function of D i!j D, the absolute value of the di!erence between
the signals' numbers given in Figure 4.

The question of major interest is how strongly the noise can be reduced by this averaging
process. The averaging over spectral components which are calculated from K sections of
a time series leads to the convergence of the noise term to zero as 1/JK. To study this
behaviour for the quantities c

1,K
eight identical, approximately isosceles sawtooth signals

(No. 4 or 5 in Figure 4) are taken to which 15% (di!erently realized) white noise is added.
A quantity which de"nes a measure for the signal-to-noise ratio of the feature vectors ci

1,K
is



Figure 7. The matrix Mr
ij
(50); 1)i)j)8N ( - - - - ) to compare with Mr

ij
(30); 1)i)j)8N (**) from

Figure 6. The perspective is 253.
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the (symmetric) matrix

r
ij

(K)"
d (ci

1,K
, cj

1,K
)

d (cJ i
1,K

, cJ j
1,K

)
, i, j"1,2, 8, (12)

which is regarded as a function of K, the number of elements MR
xl ; l"1,2, KN over

which the average per time series is performed. The feature vectors cJ i
1,K

are calculated
form the (except the noise term) identical sawtooth signals while the vectors ci

1,K
are

de"ned as above. In Figure 6, the matrix Mr
ij
(K); 1)i)j)8N is plotted for K"4, 10,

20 and 30.
As is clearly visible in Figure 6, for K[30 the quantities r

ij
(K) increase for each pair i, j in

approximately equal steps when K is doubled. An important criterion for the performance
of the noise reduction are the #uctuations of r

ij
(K) as a function of i, j with K hold "xed, i.e.,

how &&smooth'' the surfaces in Figure 6 are.
For larger values of K the averaging process does not converge. First, in the region

30[K[40 the signal-to-noise ratios of ci
1,K

appear to saturate, i.e., almost stay the same.
There is no visible di!erence between Mr

ij
(40)N and Mr

ij
(30)N; therefore these values are not

shown in Figure 6. For K'40 the averaging process becomes unstable, i.e., r
ij
(K) starts to

#uctuate and again decreases for many pairs i, j. This is illustrated in Figure 7. This
behaviour appears to be similar to that of asymptotic power series expansions which
approach the function they expand for small values of the order parameter n, reach the best
approximation for a "nite value n"n

max
, and diverge thereafter.

The performance of this noise reduction depends on the kind of signals. In the case of the
sawtooth signals the signal-to-noise ratios improve for all values of K if less than 15% noise
is added. If there is too much noise on the other side ('20%) this method fails. However,
because the sawtooth signals have a very pronounced period which does not divide the
period of the wavelet transform this example may be di$cult for the averaging mechanism
(as was intended here). In the following application to the experimental sound signals the
numerical results can be (qualitatively) con"rmed. In these tests only the convergence
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properties of the clustering algorithm described in section 3.4 that works best are shown. It
is easy to understand that any arbitrary clustering scheme will impair or even disable the
results.

4. ACOUSTIC QUALITY CONTROL OF SLIDING SUNROOFS

In this section, the application of the auto-synchronized wavelet transform analysis to the
classi"cation of structure-borne sound signals of electric sliding sunroofs is shown. Because
the pre-classi"cations of the sunroofs turned out not to be completely reliable (the repetition
of the acoustic tests by humans lead to partially deviating results) the following question is
considered.

Assume that a classi"cation algorithm is trained with time series recorded from a set of
units which represent all quality conditions. Can then the pre-classi"cations be reproduced
in an out-of-sample test? It is assumed that only those items which lie near the border of
acceptable tolerances may be unreliably pre-classi"ed. This means that the algorithm is
mainly trained with features that will also re#ect the quality conditions of the units under
test (and not arbitrary features). The classi"cation power of di!erent feature vectors can
then (at least qualitatively) be compared. The feature vectors c

1,K
will be compared to the

standard method of calculating windowed Fourier spectra. This result appears to be
statistically signi"cant for the data base available.

4.1. THE CLASSIFICATION ALGORITHM

A feature vector c
1,K

is calculated from each sound signal where K is chosen 20, 30 and 40
respectively. For the averaging process only the high-pass and the four following band-pass
components of M=¹h

xl (n, j ); l"1,2, KN are considered, as mentioned above.
The data sets recorded in both sensor positions are classi"ed separately in a leave-one-out

statistic [14]. This means that all but one of the (statistically independent) elements of a data
set are used for training of a classi"cation algorithm which then classi"es the single test
element. The process is repeated until all elements are classi"ed. This yields the classi"cation
of the data set in an out-of-sample test where the test set contains all elements and each
training set all minus one. For the sunroof data a leave-two-out statistic has to be
considered, because from each sunroof two time series were recorded in each sensor
position which have to be removed from the training set since they are not statistically
independent.

During the testing stage the test vectors are compared to each of a neighbourhood (of
di!erent size) of training samples which represent the items of good and of poor quality,
respectively. To both neighbourhoods an average distance is determined and the di!erence
of the weighted distances is then compared to a threshold value to yield a discriminating
statistic.

First, the distance of a test vector cT
1,K

to a set of training vectors Mci
1,K

; i"1,2, ¸N has
to be uniquely de"ned. This is done by the de"nition of a &&centre-of-mass vector'' of the
training neighbourhoods. Because the addition of feature vectors is not associative again
several possibilities exist.

The "rst is to take the same clustering algorithm which is already used in section 3.4 to
de"ne the averaging process of the auto-synchronized wavelet transforms. This yields a "rst
&&centre-of-mass vector'' C[

L
. But now a natural order for the addition of the training vectors

Mci
1,K

; i"1,2, ¸N in a neighbourhood exists: the distances of ci
1,K

to the test vector cT
1,K

.
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Adding the training vectors in this order yields a second &&centre-of-mass vector'' C
L
. As

a third method the clustering algorithm mentioned in section 3.4 which uni"es all
one-element clusters with only one central cluster de"nes a third &&centre-of-mass vector''
CI

L
.

A (qualitative) comparison of these possibilities yields for the sunroof data that
calculating the &&centre-of-mass vectors'' C

L
or CI

L
of the training neighbourhoods leads to

similar classi"cation results, while C[
L

shows inferior properties. This indicates that for the
averaging process of the auto-synchronized wavelet transforms and for the de"nition of
&&centre-of-mass vectors'', respectively, di!erent clustering schemes are preferable. The
important point here is that the calculation of C

L
is numerically much more inexpensive

than C[
L

or CI
L
, because the number of distances d(ci

1,K
, cj

1,K
) which have to be calculated to

determine the order of addition grows linearly with the size of the training neighbourhoods
instead of quadratically. In order to keep the computational costs of the classi"cation
algorithm a!ordable only the calculation of the &&centre-of-mass vectors'' C

L
is considered

further.
For each test vector a neighbourhood of n

1
training vectors corresponding to items of

good quality and a second one of n
2

vectors which represent the units of poor quality are
sought and the corresponding &&centre-of-mass vectors'' C

L
are calculated. Outliers can be

removed from the training set in order to train only &&typical'' quality conditions. Now, the
J-dimensional distance vectors d

g
and d

p
of a test vector cT

1,K
to the &&centre-of-mass vectors''

Cg
L

and Cp
L

of the training neighbourhoods which represent units of good and of poor
quality, respectively, are de"ned as

d
g,p

"(d([cT
1,K

]
1
, [Cg,p

L
]
1
) ,2, d([cT

1,K
]
J
, [Cg,p

L
]
J
)). (13)

The metric d ([cT
1,K

]
j
, [Cg,p

L
]
j
) (equation (8)) is calculated from only one component of the

feature vectors cT
1,K

, Cg
L

or Cp
L

(i.e., from one column of the corresponding matrices
=¹h

x
(n, j ). It is now possible to weight individually the frequency bands of the signals. This

turns out to be necessary because the information about the quality condition of the
sunroofs and other in#uences is distributed di!erently in the frequency bands of the sound
signals. Finally, the components of the feature vectors are weighted by calculating the
relative distance

d
rel
"Sd

g
!ad

p
, nT with EnE

2
"1, (14)

where S )T denotes the scalar product, a is a vector-valued parameter and n determines the
subspace into which the distance vectors are projected. The relative distance d

rel
can then be

compared to a threshold parameter to obtain the desired classi"cation of the test units into
the quality classes A and B.

For the calculation of d
rel

the parameters a, n, n
1
and n

2
(size of training neighbourhoods)

have to be estimated. This is done by estimating the Bayes error [14] of the classi"cation
statistics. This means that the total classi"cation error of the leave-two-out statistics is
minimized with respect to the parameters. Strictly speaking this yields a mixture of
in-sample and out-of-sample test, because the parameters are not estimated separately on
each training set. Therefore, the true minimal classi"cation error (the Bayes error) may be
underestimated because of the relatively large number of parameters. However, in this case
the (qualitative) comparison of di!erent features vectors is the goal.



Figure 8. The classi"cation of the sunroof data: probability of error (false rejections (the monotonically
decreasing graphs), and false acceptances (the monotonically increasing graphs)) as a function of the sensitivity
parameter j: (**), Data recorded in sensor position 1; ( - - - - ), Data recorded sensor position 2. (a): Feature
vectors c

1,40
from auto-synchronised wavelet transforms; (b): Feature vectors from spectral components.
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4.2. EXPERIMENTAL RESULTS

As in section 3.5 the performance of the feature vectors c
1,40

is "rst compared to
a spectral method. A spectral feature vector (as described in section 3.5) is calculated from
a section of length 40]512"20,480 of each sound signal. These vectors are classi"ed
analogously to the method described in section 4.1, where now the Euclidean distances



Figure 9. The classi"cation of the sunroof data using the feature vectors c
1,K

with K"20, 30, and 40 (the dotted
( ) ) ) ) ), dashed ( - - - - ) and solid lines (**) respectively). (a): Sensor position 1; (b): Sensor position 2. Compare to
Figure 8(a).
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d
g
and d

p
of the test vectors to the centre-of-mass vectors of the training neighbourhoods are

calculated and a relative distance is de"ned as d
rel
"d

g
!ad

p
with a scalar weighting

constant a.
For the calculation of d

rel
(equation (14)) the components of c

1,K
which contribute to the

classi"cation performance are selected. It turns out that the "rst band-pass of the wavelet
transforms contains no relevant information, therefore only the high-pass and the
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band-pass components 2}4 are considered. The classi"cation performance of the spectral
feature vectors on the other side could not be improved by the selection of frequency
bands.

The classi"cation results of the sound signals are shown in Figures 8 and 9 to be discussed
below. On the y-axis the fraction of the feature vectors in a test set being pre-classi"ed as
good is plotted whose distances d

rel
are larger than the threshold parameter j drawn on the

x-axis (the monotonically decreasing graphs). Equivalently, the fraction of the feature
vectors in a test set being pre-classi"ed as of poor quality is plotted whose distances d

rel
are

smaller than j (the monotonically increasing graphs). This means that for the units
pre-classi"ed as of good quality the probability of false rejections of the classi"cation
algorithm is shown as a function of j whereas for the units of poor quality the probability of
false acceptances is plotted. In other words, the tradeo! between rejecting good items and
accepting poor ones as a function of a sensitivity parameter can be read o! these "gures.
This characteristic of a classi"cation algorithm is of major interest for any on-line
application. The minimal classi"cation error (the estimated Bayes error) is given by the
crossing point of the graphs which indicate the probability of false rejections and of false
acceptances respectively.

The classi"cation of the acoustic data using both kinds of feature vectors is shown in
Figure 8. The data sets recorded in both sensor positions are classi"ed separately; this is
indicated by the use of solid and dashed lines respectively. It is clearly seen that for both
data sets the application of the feature vectors c

1,40
leads to smaller classi"cation errors

than the use of spectral components. Since the pre-classi"cations of the sunroofs are not
completely reliable these results have to be regarded qualitatively. Nevertheless, the
di!erence in the classi"cation performance of both feature vectors appears to be statistically
signi"cant.

The estimated size of the training neighbourhoods turns out to be independent of the
particular feature vector, and one obtains n

1
"18 (from 24 to 26 feature vectors which

represent the units of good quality) and n
2
"8 (from 26 to 28 vectors corresponding to units

of poor quality where 6}8 outliers are removed from the training setsA). It is not surprising
that n

1
is larger than n

2
, because the feature vectors which correspond to units of poor

quality may represent di!erent (di!erently strong) defects. The components of a are in the
range between 0 and 2.

Finally, the convergence of the averaging algorithm of the auto-synchronized
wavelet transforms should be studied for the acoustic data. Therefore, the feature
vectors c

1,K
are calculated for di!erent values of K, i.e., by averaging a di!erent number

of elements MR
xl ; l"1,2, KN per time series. The classi"cation performance of these

feature vectors can then be compared. In Figure 9, the classi"cation of the acoustic
data is shown again for both sensor positions where now the feature vectors c

1,K
are

applied with K"20, 30 and 40. The arrows in Figure 9 indicate the crossing points of
the corresponding curves of false rejections and false acceptances, i.e., the minimal
classi"cation errors.

In sensor position 1 the classi"cation power of the feature vectors c
1,30

and c
1,40

di!ers
only weakly while there is a visible inferiority of c

1,20
. In sensor position 2 the best result

is only obtained using c
1,40

while c
1,30

and c
1,20

show a continuous decrease of the
classi"cation performance. Due to the total length of the sound signals the comparison
with averages which are calculated over larger sections of the time series cannot be made.
This result indicates that the averaging of auto-synchronized wavelet transforms leads
AThe outliers, of course, remain in the test set.
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to a signi"cant reduction of statistical #uctuations also for the experimental data.
This con"rms (at least qualitatively) the numerical results obtained in section 3.5.

The computational costs of the classi"cation algorithm depend on the number of wavelet
transforms which are averaged per time series and on the size of the training set. For
K"30}40 and the size of the data set studied, the classi"cation of a single unit needs about
5}10 s of cpu-time on a modern work station. Of course, this is much more than is needed
for spectral methods, but for an on-line application it may be su$cient that the data
processing time is of the same order as the time needed to generate the sound signal. For the
electrical sunroofs this is about 6 s.

5. CONCLUSIONS

This paper has presented the concept of auto-synchronized wavelet transform analysis
and applied it to the automatic acoustic quality control of sliding sunroofs. The method
aims to classify noisy sound signals which are stationary above some time scale while the
relevant information is contained (everywhere in time space) below that time scale and can
(at least in principle) be resolved by the human ear.

The concept is to calculate feature vectors from stationary sound signals for, for example,
the automatic classi"cation at the quality control point where the particular features of the
signals which distinguish units of di!erent quality are not explicitly sought, because these
signatures are highly speci"c for each application. Instead, feature vectors are constructed
in a general manner and the classi"cation is then performed by a next neighbour search on
a training set. Because the relevant information of the sound signals can be resolved by the
human ear, i.e., by experts, the approach is to describe approximately the time}frequency
resolution of the human ear by a wavelet transform.

The main subject of this paper is a new method for the reduction of statistical #uctuations
(noise, parameter drifts) for (discrete) wavelet transforms or, more general, time}frequency
representations. A high noise level turns out to be the main problem for the automatic
classi"cation of the data by a next neighbour search algorithm. As a new approach to this
problem the class of auto-synchronized wavelet transforms is introduced, which are de"ned
as the set of all cyclic permutations of a wavelet transform in the time variable. These
quantities, calculated from subsections of a (stationary) time series, can be averaged in the
time domain without losing the time-resolved information of the signal. It is shown for
numerical data and for experimental sound signals that statistical #uctuations can be
signi"cantly reduced by this averaging algorithm in order to reveal the characteristic
features of the signals needed for the classi"cation. For the data studied the feature vectors
constructed from auto-synchronized wavelet transforms outperformed the standard
method of calculating averaged windowed Fourier spectra. But this method of noise
reduction can in general not reach the performance of methods which make use of such
additional features of a signal (if they are present) as the synchronization of a periodic signal
by a pulse signal.

Feature vectors can also be constructed from auto-synchronized time}frequency
representations of a di!erent type in an analogous way. If "lters with constant width
in frequency space are considered instead of the scaled "lters used here, a time}frequency
representation with a constant instead of a hyperbolic time}frequency resolution is
obtained. This would allow the psycho-acoustic hypothesis which motivated the approach
to be checked but for a statistically signi"cant result a larger data base is necessary.
Nevertheless, the applicability of feature vectors constructed from auto-synchronized
wavelet transforms to the classi"cation of stationary sound signals could be shown.
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